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A glimpse into Bayesian statistics 
 
Many analytical chemists find the logic of hypothesis tests and 
confidence intervals hard to follow.  What looks like a probability 
statement about a true concentration is in fact an assertion about 
random intervals, involving data we did not observe but might 
have.  There is another way.  Bayesian statistics allows, indeed 
insists on, probabilities for hypotheses.    
 
An example 
Consider the simple example of analysing a material to test it against a 
specification.  Suppose there is an upper limit cL = 10 units for an 
acceptable concentration of an impurity in the material, and by 
analysis we obtain a single measurement cm = 10.7 of the 
concentration in this particular sample.  The analytical method is 
unbiased and has known precision (standard deviation) 0.4 units.  Thus 
the variance of the measurement is vm = 0.42 = 0.16.  What is the 
strength of the evidence that the true concentration θ in this sample 
exceeds the allowable limit? 
 
A standard statistical treatment 
This argues as follows.  If the true value θ = 10, then the measurement 
is drawn from a normal distribution with mean 10 and standard 
deviation 0.4.  The probability that such a measurement is 10.7 or 
greater is the same as the probability that an observation from the 
standard normal distribution exceeds (10.7 − 10)/0.4 = 1.75, which is 
0.04 from tables.  If θ < 10, this probability will be even smaller.  The 
small probability for the observed (or more extreme) data under the 
hypothesis θ ≤ 10 is taken as evidence against the hypothesis.  Either 
we quote 0.04 as a p-value measuring the strength of this evidence or, 
noting that 0.04 is less than the magic 0.05, announce that the 
hypothesis has been rejected at the 5% level. All this should seem 
fairly familiar.  What may also be familiar is the common practice of 
interpreting the p-value as though it is the probability that the 
hypothesis is true.  It is not.  It is the probability of observing 
particular data given that the hypothesis is true.  If we want to attach 
probabilities to hypotheses then we have to work in a Bayesian 
framework.  
 
A Bayesian analysis 
The Bayesian approach requires us to quantify our beliefs about the 
true value θ in the form of a probability distribution.  These beliefs 
will change when we see the result of the measurement, and the main 
tool in Bayesian statistics is the recipe  
 

posterior ∝ likelihood × prior 
   
for updating beliefs in the light of new evidence.  The workings of this 
formula are most easily followed in the case when θ may only take 
one of a finite set of values, θ1, θ2, . . ., θk, and ‘prior’ attaches a 
probability to each θi.  This prior distribution expresses our beliefs 
about θ before observing the data.  The likelihood, which also has a 
value for each θi, is the probability of observing the data given θ = θi.  
Multiplying the prior probability and the likelihood for each θi and 
then scaling so that the resulting numbers add to one over the k values 
of θ gives us a new set of probabilities, the posterior distribution, 
which expresses our updated beliefs about θ.  When, as in our 

example, it is more natural to think of θ as continuous rather than 
discrete, prior and posterior beliefs are represented by probability 
density functions (pdfs), and the likelihood becomes a continuous 
function of θ, but the idea is essentially the same.  
 
Sometimes the updating has to be done numerically, just as described 
above, possibly after discretising a continuous distribution.  
Sometimes, if the prior distribution and likelihood have compatible 
mathematical forms, it can be done algebraically.   
 
Suppose that in our example our prior beliefs about θ may be 
described by a normal distribution with mean mp and variance vp.  This 
combines with the normal likelihood to give a normal posterior 
distribution with mean 
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a linear combination of the prior mean mp and the measurement cm 
with weights inversely proportional to the respective variances, and 
variance 
 
v = (vm

-1 + vp
-1)-1 . 

 
An ‘informative prior’ distribution 
To get any further we need to specify the values of mp and vp, the prior 
mean and variance.  If the sample of material under test comes from a 
manufacturing process that we have experience of, we may be able to 
use this experience to specify, for example, a prior mean of mp = 6 and 
variance of vp = 4.  The corresponding distribution is shown in Figure 
1, where it is the one cantered on 6 and spreading across the whole 
range.   
 

 
 
What we are saying here is that before taking account of the 
measurement we are prepared to regard the material under test as a 
randomly chosen sample from a process that produces material with an 
average impurity concentration of 6 units and a spread such that about 
2.5% of the material will exceed the allowable limit of 10 units. 
 
Plugging these numbers and the values cm = 10.7, vm = 0.16 into the 
formulae above gives us a mean of 
 




