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P; ame%s ‘ n’ }ameés?

Analytical scientists generally make replicate measurements
and treat them as a random sample, from which estimates are
made of the properties of the (hypothetically infinite) pop-
ulation of measurements. The population mean, confidence
limits etc. are usually calculated using the assumption that the
underlying distribution is normal (Gaussian), with mean u and
variance o2, i.e. it can be summarised as N(u,s?). The two terms
w and o are the parameters of the distribution. Similarly a
binomial distribution is described as B(n, p), where the
parameters n and p are respectively the total number of
measurements and the probability of one of the two possible
outcomes.

This parameter-based approach to data handling is not
essential, and may not always be appropriate. Sometimes it is
known that a population distribution is not normal or even
close to it, so deductions made on the assumption of normality
might be unreliable. This is particularly true in cases where the
same measurements are made on similar but non-identical
sample materials of natural origin. The antibody levels in blood
plasma samples from different human subjects are roughly log-
normally distributed, with the addition of some subjects with
exceptionally high levels in various disease states. Methods that
do not make assumptions about the form of the population
distribution are called non-parametric or distribution-free
methods. In applying them the familiar approach to
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significance testing is still used. We set up a null hypothesis Hy
and find the probability of obtaining the actual or more extreme
results if Hg is true: if this probability is very low Hy is rejected.
But their simplicity makes non-parametric methods attractive
even in situations where more familiar tests such as the t-test
might otherwise be applied, as the examples below will show.

S'mesim Jee am |es

Suppose that an analytical reagent is stated to have a purity of
99.5%, and that successive batches are found to have purity
levels of 99.2%, 99.8%, 98.9%, 99.4%, 99.1%, 99.3%, and
99.0%. Is there evidence that the purity of the material is lower
than it should be? Such results are unlikely to come from a
normal population (after all, the maximum possible purity is
100%) so a t-test or other parametric approach could well be
unsafe. A key statistic here is the median: the null hypothesis is
that the data come from a population with a median purity level
of 99.5%. To carry out the test we simply subtract this median
from each of the experimental results, and note the sign of the
result. This gives six minus signs and one positive sign, i.e. six of
the seven results lie below the median. (Any result that equals
the hypothetical median is ignored completely). The probability
of getting six (or more) minus signs out of seven is provided by
the binomial theorem, but the values are provided in statistical
tables, and can be memorised if we always make the same
number of measurements. Here the probability of getting 6 or
more minus signs is 0.0625, a little higher than the probability
level commonly used in significance testing (p = 0.05), so we
retain the null hypothesis that the results could come from a
population with a median purity of 99.5%. As always we have
not proved that they do come from such a population: we have
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failed to disprove it. Note that this is a one-tailed test, as the
question is whether the purity is lower than it should be. With
seven measurements the null hypothesis would only be rejected
at the p = 0.05 level if all seven results give minus signs when
compared with the median value: this outcome has a proba-
bility of only (1/2)7 = 1/128. This method is called the sign test,
and it can be extended to other situations, such as comparing
two sets of paired results, or studying a possible trend in a
sequence of results.

Another simple test with many applications is called Tukey's
Quick Test (after John W. Tukey, a major figure in non-para-
metric statistics and initial data analysis) or the Tail Count Test,
the latter being a good description of its operation. It is used to
compare two independent data sets, which need not be of the
same size. Suppose we obtain six values of the level of atmo-
spheric NO, (ug m~3) at a roadside site: 128, 121, 117, 125, 131
and 119. At a nearby off-road site we make six more measure-
ments using the same analytical method, obtaining the results
120, 108, 109, 112, 114 and 110 pg m~3. Is there any evidence
that the NO, level is lower at the second site than at the first?
These two sets of results could be compared using a (one-tailed)
t-test, but the Tukey approach is simpler. We simply count the
number of results in the first data set that are higher than all the
values in the second set (there are 4 of them), and the number of
values in the second set that are lower than all those in the first
set (5 of them). If either of these counts is zero, the test ends at
once with the null hypothesis (here, that moving away from the
road does not affect the NOy level) being accepted. Otherwise
the two counts are added together to provide the test statistic T
(= 9 here), and this is compared with the critical value. For a
one-tailed test at p = 0.05, T must be greater than or equal to 6 if
Hy is to be rejected. So Hq can be rejected here; the NO, level at
the off-road site does seem to be lower. The merit of the Tukey
method is that if the total number of measurements is no more
than ~20, and if the two sample sizes are not greatly different
(conditions often met in analytical practice), the critical T values
are independent of sample size! For the rejection of the null
hypothesis in a one-tailed test the value of T must be =6, 7, 10
and 14 at p = 0.05, 0.025, 0.005, and 0.0005 respectively. For a
two-tailed test the corresponding critical values of T are 7, 8, 11
and 15 respectively. This remarkable feature of the method
means that it can be carried out using mental arithmetic only.
Wha s n” _  like?
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Many non-parametric methods have been developed, including
tests analogous to the familiar t- and F-tests, analysis of vari-
ance, and calibration and regression methods, but despite their
practical merits only a few have found favour in the analytical
sciences. One possible reason for this is that most non-para-
metric methods need a sample of at least 6 measurements.
Another reason is the growing popularity of robust methods
(AMCTB 6, 50), which are well suited to the common situation
where the error distribution is unimodal but not very different
from Gaussian. Furthermore it is evident that in the two

examples above the full numerical content of the data is not
used. In the sign test only the signs of the differences are
counted, not their magnitude; and in the Tukey method the test
statistic is again a count rather than an exact re fection of the
numerical results. We might thus expect that non-parametric
methods would be poorer than methods wise
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